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Abstract

The influence function in the peridynamic theory is used to weight the contribution of all the bonds participating
in the computation of volume-dependent properties. In this work [4], we use influence functions to establish
relationships between bond-based and state-based peridynamic models. We also demonstrate how influence
functions can be used to control nonlocal effects within a peridynamic model independently of the length scale
set by the peridynamic horizon. We explore the effects of influence functions by studying wave propagation in
simple one-dimensional models, and brittle fracture in three-dimensional models.

I. The Peridynamics Theory

State-based Peridynamics
In the state-based peridynamics (PD) theory, the deformation at a point depends collectively on all the points
interacting with it. The PD equation of motion is [1]

ρ(x)ü(x, t) =

∫
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{
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〉
−T
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x′, t
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x− x′

〉}
dVx′ + b(x, t), (1)

with ρ the mass density, u the displacement field, and b a body force.
A point x interacts with all the points x′ within the neighborhood Hx,
assumed to be a spherical region of radius δ > 0 centered at x; δ is called
the horizon. The vector force state T [x, t] 〈·〉 is a mapping, having units
of force per volume squared, of the vector x′− x to the force vector state
field. We consider only models that can be written as T = tM, with t a
scalar force state and M the deformed direction vector state.

Influence functions
An influence function is a nonnegative scalar state ω defined on Hx. If an influence function ω depends only
upon the scalar |x′−x|, then ω is a spherical influence function. Influence functions are used in the construction
of peridynamic constitutive models. They were suggested as a selection mechanism to determine which bonds
participate in the calculation of the force state and other related quantities [1].

We show that influence functions can be used to connect families of peridynamic constitutive
models, and to moderate the strength of nonlocal interactions

Peridynamic Force States Derived from Pairwise Potentials
Conservative forces derive from a potential. If we assume a force state derives from a pairwise potential (as
opposed to a multibody potential), it can be written as using the scalar force state field

t [x, t]
〈
x′ − x

〉
=

1

2
f
(
u(x′, t)− u(x, t),x′ − x

)
, (2)

with f a scalar-valued function, having units of energy per volume squared. Then, (1) reduces to

ρ(x)ü(x, t) =

∫
Hx

f
(
u(x′, t)− u(x, t),x′ − x

)
dVx′ + b(x, t). (3)

Equation (3) is the equation of motion corresponding to the bond-based PD theory presented in [2].

II. Peridynamic Constitutive Models
and Their Relationships

Two of the most commonly used peridynamic constitutive models are the linear peridynamic solid (LPS) model
[1] and the prototype microelastic brittle (PMB) model [3].

Linear Peridynamic Solid (LPS)
t =

3Kθ

m
ω x + αω ed, (4)

with x the reference position scalar state, m the weighted volume, e the extension scalar state, α = 15G
m , G the

shear modulus, K the bulk modulus, θ the dilatation, and ed the deviatoric part of the extension.

For the specific spherical influence function

ω
〈
x′ − x

〉
= 1/

∣∣x′ − x
∣∣ (5)

and a Poisson ratio ν = 1/4, we obtain, by using relation (2), the bond-based PMB model (6).

Prototype Microelastic Brittle (PMB)
f = c s, (6)

with c = 18K/πδ4, and s the stretch.

Utilizing the spherical influence function (5), we have shown that the bond-based PMB model is a
special case of the state-based LPS model, with Poisson ratio ν = 1/4

III. Generalized PMB Models

We may derive generalized PMB (GPMB) models by writing the influence function in (4) as

ω
〈
x′ − x

〉
= ωg

(∣∣x′ − x
∣∣) ∣∣x′ − x

∣∣−1 (7)

for a Poisson ratio ν = 1/4, with ωg
(∣∣x′ − x

∣∣) a general spherical function. The resulting pairwise force
function is

f = cg s ωg
(∣∣x′ − x

∣∣) . (8)

We define cg by equating the macroelastic energy density of the GPMB model under an isotropic extension, to
the strain energy density in the classical theory of elasticity for the same material and the same deformation.

There exist many GPMB models of the form (8), including the PMB model (6), all of which are
special cases of the LPS model (4)

IV. Numerical Examples

One-dimensional example
We explore the role of the influence function through a one-dimensional example, demonstrating that an in-
creasingly localized behavior can be obtained from a nonlocal model by moderating the strength of the nonlocal
interactions. We define

Ψp
(∣∣x′ − x

∣∣) :=

(
1

|x′ − x| + ε

)p
, (9)

with ε > 0 a softening length. The family of p-dependent spherical functions (9) serve as a weighting of the
strength of the bonds integrated within (3). Inserting this specific family of functions into (7) defines an influence
function ω

〈
x′ − x

〉
.

We present numerical results comparing the density evolution of a smooth pulse in a one-dimensional system,
for different values of p. We implement the spherical function (9) in model (8). Dispersion is numerically
manifested as broadening of the lines. We choose a domain B = [0, 1000] with 4001 equally spaced nodes.
Furthermore, δ = 5, K = 1, ρ = 1, b = 0, ε = 1, and ∆t = 0.56. The p = 10 case is the least dispersive.

(a) p = 1 (b) p = 3 (c) p = 10

Three-dimensional example
To investigate the effect of the influence function on the evolution of fracture patterns, we utilize the PD-
LAMMPS code, and assume bonds break if they are stretched too far. Following [3], we simulate the impact
of a hard sphere on a brittle target. The target is a thin disc of diameter 74 mm and 2.5 mm thick, having bulk
modulus K = 14.9 GPa, density ρ = 2200 kg/m3, and ε = 1 m in (9). The spherical projectile has a radius of
10 mm and a velocity of 100 m/s. The target has a total of about 103, 000 particles, and the horizon is chosen as
δ = 1.5 mm. The time step is chosen as ∆t = 10−9 s, which is CFL-stable.

We present top-down views of the target for various time steps, for different values of p, with the projectile
removed so as to not obscure the target. We observe that for larger values of p cracks grow essentially along the
axes of the mesh, whereas the cracks for p = 0 appear to be independent of the mesh. This is consistent with
the hypothesis that large values of p lead to models dominated by local and nearly-local interactions. The colors
represent damage, which is computed as one minus the number of unbroken bonds in the current configuration
divided by the number of unbroken bonds in the reference configuration.

p = 0

(d) t = 3 · 10−5s (e) t = 4 · 10−5s (f) t = 5 · 10−5s

p = 5 · 103

(g) t = 3 · 10−5s (h) t = 4 · 10−5s (i) t = 5 · 10−5s

p = 104

(j) t = 3 · 10−5s (k) t = 4 · 10−5s (l) t = 5 · 10−5s

V. Conclusions

To explore the role of influence functions within the peridynamic theory, we began by demonstrating that the
bond-based PMB model (6), the most popular bond-based peridynamic model, is a special case of the state-
based LPS model (4), for Poisson ratio ν = 1/4 and influence function (5). We also showed that there exists
a related family of generalized PMB models that can be derived by selecting other influence functions. Using
one-dimensional examples, we showed that influence functions can be used to control nonlocal effects within a
peridynamic model independently of the length scale set by the peridynamic horizon, δ. Lastly, we investigated
the effect specific influence functions have on dynamic fracture simulations, reporting results for the impact of
a hard sphere on brittle targets.
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