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Abstract l

We consider the numerical solutions of the following backdstochastic dif-
ferential equation(BSDE):
—dy; = f(t,y, zp)dt — zdWy, t €10,T),
{ _ (1)
yr = &,
which are of great importance In financial mathematics,lstetic control, stock
markets, turbulent fluid flow ,etc. We propose a stable nuaiép scheme on
time-space grids for solving BSDEs. The integrands areaqmated, in the
time direction, by using Lagrange interpolating polynolsiaith values at multi-
time levels. In the spatial directions, we construct a newdlof stochastic pro-
cess, called Gauss-Hermite process, by which the integrarel approximated
accurately and the spatial complexity can be reduced stgnifly. For high-
dimensional problems, the sparse grids are employed tpolade the solutions
In the spatial directions, such that the high-dimensionaDBs can be solved

much more efficiently with relatively high accuracy.

The Discrete Scheme l

For simplicity, we consider the one-dimensional case onium grid of the
time interval|0, T'| with N steps. AssumaW, = W, — W, for s > t,, is a stan-
dard Brownian motion followingV(0,s — ¢,), and(y, z:) : [0,T] X 2 — R X R
IS the exact solution of the BSDE (1). For a given positivegark satisfying
1 <k <N,Itis easy to obtain

bk btk
Yt, = Yt =+ /t f(S, Ys, Zs) ds — /t <s dWs (2)

 The reference equations
Multiply both sides of the equation (2) bW, . wherel Is a positive integer
andl <[ < N, then take the conditional mathematical expectatjgr to both
sides of the derived equation and the equation (2), twoeater equations for
y; andz; are obtained respectively, I.e.
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o The discretization scheme

All the conditional mathematical expectations are apprmated by using La-
grange Interpolating polynomials with their valuesigt and K, levels in the
time direction; and approximated by Gauss-Hermite quadeaule in the spa-
tial directions. So that we obtain the following discretiaa scheme
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An Efficient Scheme by Gauss-Hermite Proc%'uu

For the approximation of the conditional mathematical exgons In space,
Gauss-Hermite quadrature rule results in expensive catipos, so that we con-
struct the Gauss-Hermite process, combining the Gaussikéequadrature rule
and the properties of Brownian motion, to get the more eflicseheme.

¢ Disadvantages of the Gauss-Hermite quadrature

—Losing the random properties
NRPHREX

—Having expensive cost In space

e Advantages of the Gauss-Hermite process

—Considering the random properties
—Having much less cost in space
—Keeping the same accuracy as before
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Fig.2 The comparison of the original and the reduced tinrsesmlomain

Sparse Grids \

For ad-dimensional BSDE, the discretization on the full spatiatlg involves
O(N?) degrees of freedom, wherg is the number of grid points in one coor-
dinate direction. Obviously, the complexity will grow uppmnentially. There-
fore, we construct the sparse grids to discretize the sphtrmain such that only
O(N - (log N)4~1) degrees of freedom are involved. Then the solutigrend z;
can be interpolated at all needed Gauss points by the as=btiararchical bases
Instead of nodal bases in space. In this case, high dimeaigpooblems can be
handled efficiently. The results of numerical experimentsh& given in the next
section.
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Numerical Experiments \

Here, we solve the 2 dimensional Black-Scholes equatiohaw ghe efficiency
and accuracy of our scheme. The results show that the schenm&ry Gauss-
Hermite process model is so efficient that the computatitma decreases by al-
most one order of magnitude. For the effectiveness of thessgaids, it becomes
even worse for cases with small time steps due to the coseafdhstruction and
related operations of the sparse grids. However, the aagastof the sparse grids
show up when dealing with the problem on a time-space gridrge size.
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