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Abstract

We consider the numerical solutions of the following backward stochastic dif-
ferential equation(BSDE):







−dyt = f (t, yt, zt)dt − ztdWt, t ∈ [0, T ),

yT = ξ,
(1)

which are of great importance in financial mathematics, stochastic control, stock
markets, turbulent fluid flow ,etc. We propose a stable multi-step scheme on
time-space grids for solving BSDEs. The integrands are approximated, in the
time direction, by using Lagrange interpolating polynomials with values at multi-
time levels. In the spatial directions, we construct a new kind of stochastic pro-
cess, called Gauss-Hermite process, by which the integrands are approximated
accurately and the spatial complexity can be reduced significantly. For high-
dimensional problems, the sparse grids are employed to interpolate the solutions
in the spatial directions, such that the high-dimensional BSDEs can be solved
much more efficiently with relatively high accuracy.

The Discrete Scheme

For simplicity, we consider the one-dimensional case on a uniform grid of the
time interval[0, T ] with N steps. Assume∆Ws = Ws − Wtn for s ≥ tn, is a stan-
dard Brownian motion followingN(0, s − tn), and(yt, zt) : [0, T ] × Ω → R × R

is the exact solution of the BSDE (1). For a given positive integerk satisfying
1 ≤ k ≤ N , it is easy to obtain

ytn = ytn+k
+

∫ tn+k

tn
f (s, ys, zs) ds −

∫ tn+k

tn
zs dWs. (2)

•The reference equations
Multiply both sides of the equation (2) by∆Wtn+l

wherel is a positive integer
and1 ≤ l ≤ N , then take the conditional mathematical expectationE

x
tn
[·] to both

sides of the derived equation and the equation (2), two reference equations for
yt andzt are obtained respectively, i.e.

ytn = E
x
tn
[ytn+k

] +
∫ tn+k

tn
E

x
tn
[f (s, ys, zs)]ds

0 = E
x
tn
[ytn+l

∆Wtn+l
] +

∫ tn+l

tn
E

x
tn
[f (s, ys, zs)∆Ws]ds −

∫ tn+l

tn
E

x
tn
[zs]ds.

(3)

•The discretization scheme
All the conditional mathematical expectations are approximated by using La-
grange interpolating polynomials with their values atKy andKz levels in the
time direction; and approximated by Gauss-Hermite quadrature rule in the spa-
tial directions. So that we obtain the following discretization scheme

yn
i = Ê

xi

tn
[ŷn+k] + k∆t

Ky
∑

j=1

bk
Ky,j

Ê
xi

tn
[f (tn+j, ŷ

n+j, ẑn+j)]

+k∆tf (tn, y
n
i , z

n
i ),

0 = Ê
xi

tn
[ẑn+l] +

Kz
∑

j=1

bl
Kz,j

Ê
xi

tn
[f (tn+j, ŷ

n+j, ẑn+j)∆Wtn+j
]

−

Kz
∑

j=1

bl
Kz,j

Ê
xi

tn
[ẑn+j] − bl

Kz,0
zn
i .

An Efficient Scheme by Gauss-Hermite Process

For the approximation of the conditional mathematical expectations in space,
Gauss-Hermite quadrature rule results in expensive computations, so that we con-
struct the Gauss-Hermite process, combining the Gauss-Hermite quadrature rule
and the properties of Brownian motion, to get the more efficient scheme.

•Disadvantages of the Gauss-Hermite quadrature

–Losing the random properties

–Having expensive cost in space

Space

Time

Fig.1 A 4 steps Gauss-Hermite process
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Fig.2 The comparison of the original and the reduced time-space domain

•Advantages of the Gauss-Hermite process

–Considering the random properties

–Having much less cost in space

–Keeping the same accuracy as before

Sparse Grids

For ad-dimensional BSDE, the discretization on the full spatial grids involves
O(Nd) degrees of freedom, whereN is the number of grid points in one coor-
dinate direction. Obviously, the complexity will grow up exponentially. There-
fore, we construct the sparse grids to discretize the spatial domain such that only
O(N · (log N)d−1) degrees of freedom are involved. Then the solutionsyt andzt

can be interpolated at all needed Gauss points by the associated hierarchical bases
instead of nodal bases in space. In this case, high dimensional problems can be
handled efficiently. The results of numerical experiments will be given in the next
section.
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Numerical Experiments

Here, we solve the 2 dimensional Black-Scholes equation to show the efficiency
and accuracy of our scheme. The results show that the scheme by using Gauss-
Hermite process model is so efficient that the computationaltime decreases by al-
most one order of magnitude. For the effectiveness of the sparse grids, it becomes
even worse for cases with small time steps due to the cost of the construction and
related operations of the sparse grids. However, the advantages of the sparse grids
show up when dealing with the problem on a time-space grid of large size.
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