program main !*****************************************************************************80 ! !! cvtp_test() tests cvtp(). ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 28 July 2016 ! ! Author: ! ! John Burkardt ! implicit none call timestamp ( ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'CVTP_TEST()' write ( *, '(a)' ) ' FORTRAN90 version' write ( *, '(a)' ) ' Test CVTP().' call cvtp_modular_test ( ) call cvtp_nonmodular_test ( ) ! ! Terminate. ! write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'CVTP_TEST' write ( *, '(a)' ) ' Normal end of execution.' write ( *, '(a)' ) ' ' call timestamp ( ) stop 0 end subroutine cvtp_modular_test ( ) !*****************************************************************************80 ! !! CVTP_MODULAR_TEST tests CVTP with MODULAR TRUE. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 25 July 2016 ! ! Author: ! ! John Burkardt ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: m = 2 integer, parameter :: n = 400 real ( kind = rk ) change_l2 integer, parameter :: cvt_steps = 50 character ( len = 80 ) :: file_out_name = 'cvtp_1x1.txt' real ( kind = rk ) generator(m,n) integer i logical modular logical reset integer sample_num_cvt integer, parameter :: sample_num_steps = 50 real ( kind = rk ) width(m) write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'CVTP_MODULAR_TEST' write ( *, '(a)' ) ' CVTP can compute a periodic Centroidal Voronoi Tessellation' write ( *, '(a)' ) ' We set MODULAR to TRUE to do this.' generator(1:m,1:n) = 0.0D+00 modular = .true. reset = .true. sample_num_cvt = 100000 width = (/ 1.0D+00, 1.0D+00 /) write ( *, '(a)' ) ' ' write ( *, '(a,i12)' ) ' Spatial dimension M = ', m write ( *, '(a,i12)' ) ' Number of generators = ', n write ( *, '(a,l)' ) ' MODULAR arithmetic option = ', modular write ( *, '(a,i6)' ) ' Number of sample points = ', sample_num_cvt write ( *, '(a,i6)' ) ' Number of sample steps = ', sample_num_steps ! ! Initialize the generators. ! call cvtp_region_sampler ( m, n, generator, width ) do i = 1, cvt_steps call cvtp_iteration ( m, n, generator, width, modular, sample_num_cvt, & change_l2 ) end do call r8mat_write ( file_out_name, m, n, generator ) return end subroutine cvtp_nonmodular_test ( ) !*****************************************************************************80 ! !! CVTP_NONMODULAR_TEST tests CVTP with MODULAR false. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 25 July 2016 ! ! Author: ! ! John Burkardt ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: m = 2 integer, parameter :: n = 400 real ( kind = rk ) change_l2 integer, parameter :: cvt_steps = 50 character ( len = 80 ) :: file_out_name = 'cvt_1x1.txt' real ( kind = rk ) generator(m,n) integer i logical modular logical reset integer sample_num_cvt integer, parameter :: sample_num_steps = 50 real ( kind = rk ) width(m) write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'CVTP_NONMODULAR_TEST' write ( *, '(a)' ) ' CVTP can compute a periodic Centroidal Voronoi Tessellation.' write ( *, '(a)' ) ' But here, we turn modularity OFF.' generator(1:m,1:n) = 0.0D+00 modular = .false. reset = .true. sample_num_cvt = 100000 width = (/ 1.0D+00, 1.0D+00 /) write ( *, '(a)' ) ' ' write ( *, '(a,i12)' ) ' Spatial dimension M = ', m write ( *, '(a,i12)' ) ' Number of generators = ', n write ( *, '(a,l)' ) ' MODULAR arithmetic option = ', modular write ( *, '(a,i6)' ) ' Number of sample points = ', sample_num_cvt write ( *, '(a,i6)' ) ' Number of sample steps = ', sample_num_steps ! ! Initialize the generators. ! call cvtp_region_sampler ( m, n, generator, width ) do i = 1, cvt_steps call cvtp_iteration ( m, n, generator, width, modular, sample_num_cvt, & change_l2 ) end do call r8mat_write ( file_out_name, m, n, generator ) return end